Place Recognition using Surface Entropy Features

Torsten Fiolka1, Jörg Stückler2, Dominik A. Klein3, Dirk Schulz1, and Sven Behnke2

1Fraunhofer Institute for Communication, Information Processing, and Ergonomics FKIE, Wachtberg, Germany

2Autonomous Intelligent Systems Computer Science Institute VI University of Bonn, Germany

3Intelligent Vision Systems, Computer Science Institute III, University of Bonn, Germany
Place Recognition using Interest Points

- Compress image content into set of prominent points
- Repeatable detection, distinctive description
- Invariance to image transformations
- Place recognition: classify set of point features
Prominent Points on Surfaces

- Why yet another 3D interest point?
 - Feature quality determines recognition rate
 - Entropy as a principled measure of prominence
 - 3D: Characterize local distribution of surface orientation changes
Measuring Interest on Surfaces using Entropy

- Distribution of surface curvature directions in local point neighborhood (scale)
- Entropy attains spatial maxima at points with prominent surface variation
Approximation of Curvature Distribution

- Curvature directions from pairs of surface normals
 \[\frac{(\hat{n}(\mathcal{E}) \times \hat{n}_r(\vec{q}_k))}{\|\hat{n}(\mathcal{E}) \times \hat{n}_r(\vec{q}_k)\|_2} \]

- Orientation histogram with center bin for parallel normals
- Interpolate between center and directional bins
 \[w_\times = (1 - \langle \hat{n}(\mathcal{E}), \hat{n}_r(\vec{q}_k) \rangle) \]
Efficient Implementation

• Octree
 – Multi-resolution
 – Regular sampling
 – Efficient aggregation of statistics within node volumes

• Efficient interest point detection
 – Parameters: Histogram and normal scale / sampling rate
 – Set octree maximum depth to match highest normal sampling rate
 – Set ratios between parameters to powers of 2 to hit octree resolutions
Occlusion Handling in Depth Images

- Fill-in points along view direction
- Virtual background detections
- Foreground detections
 - Fill-in points along view direction
Shape Descriptor

- Rotation-invariant description of surface curvature in local point neighborhood
- Histogram of surfel-pair relations between normal at interest point and neighboring normals
- Euclidean distance for descriptor comparison
Colorful Texture Descriptor

- Rotation-invariant description of
 - hue and saturation (HSL color space),
 - luminance contrasts

- Fast Earth Mover’s Distance with truncated ground distance to handle illumination changes
Place Recognition – Training

extract visual vocabulary

training images with features

living room

kitchen
Place Recognition – Training

- Extract visual vocabulary
- Generate word histograms

`training images with features`

`living room`

`kitchen`

`training images with word histograms`
Place Recognition – Recall

- **Category?**
 - Query Image

- **Query Word Histogram**

- **Generate Word Histogram**

- **Trained Visual Vocabulary**
Place Recognition – Recall

category?

query image

query word histogram

intersect histograms

living room

kitchen

... living room

kitchen

bathroom

20 best matches
Place Recognition – Recall

- Category?
- Query image
- Query word histogram

- Kitchen
- Match features

- 20 best matches
Evaluation – Setup

• Interest points
 – comparison with NARF
 – 4 datasets (3 objects, clutter) with ground truth poses
 – 3 scales (12, 24, 48cm)

• Place Recognition
 – comparison with NARF
 – 2 location datasets with 500 images from 3 rooms and 200 images from 5 rooms (kitchen, bathroom, living room, bedroom, corridor)
Evaluation – Repeatability

- simple: bidirectional consistent nearest neighbor matching
- unique: interest points also unique in scale range
- type of measure has little effect on SURE, few redundant interest points
• SURE without colorful texture descriptor (shape only) achieves similar or better scores than NARF
• Use of SURE’s colorful texture descriptor has a clear advantage
Evaluation – Run-Time

<table>
<thead>
<tr>
<th>dataset</th>
<th>SURE</th>
<th></th>
<th>NARF 160x120</th>
<th></th>
<th>NARF 320x240</th>
<th></th>
<th>NARF 640x480</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#features</td>
<td>run-time (sec)</td>
<td>#features</td>
<td>run-time (sec)</td>
<td>#features</td>
<td>run-time (sec)</td>
<td>#features</td>
<td>run-time (sec)</td>
</tr>
<tr>
<td>box</td>
<td>8.8</td>
<td>0.62</td>
<td>14.8</td>
<td>0.27</td>
<td>18.2</td>
<td>1.95</td>
<td>32.5</td>
<td>160.18</td>
</tr>
<tr>
<td>rocking horses</td>
<td>19.8</td>
<td>0.72</td>
<td>44.6</td>
<td>0.36</td>
<td>72.4</td>
<td>3.25</td>
<td>121.6</td>
<td>133.36</td>
</tr>
<tr>
<td>teddy</td>
<td>3.9</td>
<td>0.72</td>
<td>15.3</td>
<td>0.26</td>
<td>26.9</td>
<td>2.09</td>
<td>43.0</td>
<td>164.43</td>
</tr>
<tr>
<td>clutter</td>
<td>26.4</td>
<td>0.84</td>
<td>26.5</td>
<td>0.27</td>
<td>48.4</td>
<td>3.24</td>
<td>93.3</td>
<td>179.20</td>
</tr>
</tbody>
</table>

- SURE 640x480 requires computation time between NARF 160x120 and NARF 320x240
Evaluation – Place Recognition

<table>
<thead>
<tr>
<th>dataset</th>
<th>method</th>
<th>correct</th>
<th>avg. run-time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NARF 160x120</td>
<td>53.3%</td>
<td>0.3 sec</td>
</tr>
<tr>
<td>3 rooms</td>
<td>NARF 320x240</td>
<td>55.1%</td>
<td>4 sec</td>
</tr>
<tr>
<td></td>
<td>NARF 640x480</td>
<td>28.1%</td>
<td>4 min</td>
</tr>
<tr>
<td></td>
<td>SURE shape only</td>
<td>56.2%</td>
<td>1.4 sec</td>
</tr>
<tr>
<td></td>
<td>SURE color+shape</td>
<td>91.5%</td>
<td>1.6 sec</td>
</tr>
<tr>
<td>5 rooms</td>
<td>NARF 160x120</td>
<td>37.5%</td>
<td>0.3 sec</td>
</tr>
<tr>
<td></td>
<td>NARF 320x240</td>
<td>39.1%</td>
<td>4 sec</td>
</tr>
<tr>
<td></td>
<td>NARF 640x480</td>
<td>24.0%</td>
<td>4 min</td>
</tr>
<tr>
<td></td>
<td>SURE shape only</td>
<td>43.4%</td>
<td>1.4 sec</td>
</tr>
<tr>
<td></td>
<td>SURE color+shape</td>
<td>88.3%</td>
<td>1.9 sec</td>
</tr>
<tr>
<td></td>
<td>SURE, direct comparison</td>
<td>91.1%</td>
<td>4.8 sec</td>
</tr>
</tbody>
</table>

- Shape alone not sufficient
- Inclusion of colorful texture descriptors achieves high recognition rates
- Direct feature comparison better but computationally more demanding
Summary and Future Work

- SURE is a novel pairing of interest point detector and descriptor for 3D point clouds and depth images based on surface entropy
- Promising results w.r.t. detector repeatability and matching by descriptor
- High recognition rates with our place recognition approach

Future Directions:

- Complement detector with texture
- Automatic scale selection
- Further applications, e.g., loop-closing
Thank you!
Detected Interest Points